Connect with us

Technology

Facebook prototypes Favorites for close friends microsharing

Facebook is building its own version of Instagram Close Friends, the company confirms to TechCrunch. There are a lot people that don’t share on Facebook because it can feel risky or awkward as its definition of “friends” has swelled to include family, work colleagues and distant acquaintances. No one wants their boss or grandma seeing…

Published

on

Facebook prototypes Favorites for close friends microsharing

Facebook is building its own version of Instagram Close Friends, the company confirms to TechCrunch. There are a lot people that don’t share on Facebook because it can feel risky or awkward as its definition of “friends” has swelled to include family, work colleagues and distant acquaintances. No one wants their boss or grandma seeing their weekend partying or edgy memes. There are whole types of sharing, like Snapchat’s Snap Map-style live location tracking, that feel creepy to expose to such a wide audience.

The social network needs to get a handle on microsharing. Yet Facebook has tried and failed over the years to get people to build Friend Lists for posting to different subsets of their network.

Back in 2011, Facebook said that 95% of users hadn’t made a single list. So it tried auto-grouping people into Smart Lists like High School Friends and Co-Workers, and offered manual always-see-in-feed Close Friends and only-see-important-updates Acquaintances lists. But they too saw little traction and few product updates in the past eight years. Facebook ended up shutting down Friend Lists Feeds last year for viewing what certain sets of friends shared.

Then a year ago, Instagram made a breakthrough. Instead of making a complicated array of Friend Lists you could never remember who was on, it made a single Close Friends list with a dedicated button for sharing to them from Stories. Instagram’s research found 85% of a user’s Direct messages go to the same three people, so why not make that easier for Stories without pulling everyone into a group thread? Last month I wrote that “I’m surprised Facebook doesn’t already have its own Close Friends feature, and it’d be smart to build one.”

How Facebook Favorites works

Now Facebook is in fact prototyping its version of Instagram Close Friends called Favorites. It lets users designate certain friends as Favorites, and then instantly post their Story from Facebook or Messenger to just those people instead of all their friends, as is the default.

The feature was first spotted inside Messenger by reverse engineering master and frequent TechCrunch tipster Jane Manchun Wong. Buried in the Android app is the code that let Wong generate the screenshots (above) of this unreleased feature. They show how when users go to share a Story from Messenger, Facebook offers to let users post it to Favorites, and edit who’s on that list or add to it from algorithmic suggestions. Users in that Favorites list would then be the only recipients of that post within Stories, like with Instagram Close Friends.

A Facebook spokesperson confirmed to me that this feature is a prototype that the Messenger team created. It’s an early exploration of the microsharing opportunity, and the feature isn’t officially testing internally with employees or publicly in the wild. The spokesperson describes the Favorites feature as a type of shortcut for sharing to a specific set of people. They tell me that Facebook is always exploring new ways to share, and as discussed at its F8 conference this year, Facebook is focused on improving the experience of sharing with and staying more connected to your closest friends.

Unlocking creepier sharing

There are a ton of benefits Facebook could get from a Favorites feature if it ever launches. First, users might share more often if they can make content visible to just their best pals, as those people wouldn’t get annoyed by over-posting. Second, Facebook could get new, more intimate types of content shared, from the heartfelt and vulnerable to the silly and spontaneous to the racy and shocking — stuff people don’t want every single person they’ve ever accepted a friend request from to see. Favorites could reduce self-censorship.

“No one has ever mastered a close friends graph and made it easy for people to understand . . . People get friend requests and they feel pressure to accept,” Instagram director of product Robby Stein told me when it launched Close Friends last year. “The curve is actually that your sharing goes up and as you add more people initially, as more people can respond to you. But then there’s a point where it reduces sharing over time.” Google+, Path and other apps have died chasing this purposefully selective microsharing behavior.

Facebook Favorites could stimulate lots of sharing of content unique to its network, thereby driving usage and ad views. After all, Facebook said in April that it had 500 million daily Stories users across Facebook and Messenger, the same number as Instagram Stories and WhatsApp Status.

Before Instagram launched Close Friends, it actually tested the feature under the name Favorites and allowed you to share feed posts as well as Stories to just that subset of people. And last month Instagram launched the Close Friends-only messaging app Threads that lets you share your Auto-Status about where or what you’re up to.

Facebook Favorites could similarly unlock whole new ways to connect. Facebook can’t follow some apps like Snapchat down more privacy-centric product paths because it knows users are already uneasy about it after 15 years of privacy scandals. Apps built for sharing to different graphs than Facebook have been some of the few social products that have succeeded outside its empire, from Twitter’s interest graph, to TikTok’s fandoms of public entertainment, to Snapchat’s messaging threads with besties.

Instagram Threads

A competent and popular Facebook Favorites could let it try products in location, memes, performances, Q&A, messaging, live streaming and more. It could build its own take on Instagram Threads, let people share exact location just with Favorites instead of just what neighborhood they’re in with Nearby Friends or create a dedicated meme resharing hub like the LOL experiment for teens it shut down. At the very least, it could integrate with Instagram Close Friends so you could syndicate posts from Instagram to your Facebook Favorites.

The whole concept of Favorites aligns with Facebook CEO Mark Zuckerberg’s privacy-focused vision for social networking. “Many people prefer the intimacy of communicating one-on-one or with just a few friends,” he writes. Facebook can’t just be the general purpose catch-all social network we occasionally check for acquaintances’ broadcasted life updates. To survive another 15 years, it must be where people come back each day to get real with their dearest friends. Less can be more.

Click to comment

You must be logged in to post a comment Login

Leave a Reply

Technology

How the Dumb Design of a WWII Plane Led to the Macintosh

The B-17 Flying Fortress rolled off the drawing board and onto the runway in a mere 12 months, just in time to become the fearsome workhorse of the US Air Force during World War II. Its astounding toughness made pilots adore it: The B-17 could roar through angry squalls of shrapnel and bullets, emerging pockmarked…

Published

on

How the Dumb Design of a WWII Plane Led to the Macintosh

The B-17 Flying Fortress rolled off the drawing board and onto the runway in a mere 12 months, just in time to become the fearsome workhorse of the US Air Force during World War II. Its astounding toughness made pilots adore it: The B-17 could roar through angry squalls of shrapnel and bullets, emerging pockmarked but still airworthy. It was a symbol of American ingenuity, held aloft by four engines, bristling with a dozen machine guns.

Imagine being a pilot of that mighty plane. You know your primary enemy—the Germans and Japanese in your gunsights. But you have another enemy that you can’t see, and it strikes at the most baffling times. Say you’re easing in for another routine landing. You reach down to deploy your landing gear. Suddenly, you hear the scream of metal tearing into the tarmac. You’re rag-dolling around the cockpit while your plane skitters across the runway. A thought flickers across your mind about the gunners below and the other crew: “Whatever has happened to them now, it’s my fault.” When your plane finally lurches to a halt, you wonder to yourself: “How on earth did my plane just crash when everything was going fine? What have I done?”

For all the triumph of America’s new planes and tanks during World War II, a silent reaper stalked the battlefield: accidental deaths and mysterious crashes that no amount of training ever seemed to fix. And it wasn’t until the end of the war that the Air Force finally resolved to figure out what had happened.

To do that, the Air Force called upon a young psychologist at the Aero Medical Laboratory at Wright-Patterson Air Force Base near Dayton, Ohio. Paul Fitts was a handsome man with a soft Tennessee drawl, analytically minded but with a shiny wave of Brylcreemed hair, Elvis-like, which projected a certain suave nonconformity. Decades later, he’d become known as one of the Air Force’s great minds, the person tasked with hardest, weirdest problems—such as figuring out why people saw UFOs.

For now though, he was still trying to make his name with a newly minted PhD in experimental psychology. Having an advanced degree in psychology was still a novelty; with that novelty came a certain authority. Fitts was supposed to know how people think. But his true talent is to realize that he doesn’t.

Adapted from User Friendly: How the Hidden Rules of Design Are Changing the Way We Live, Work, and Play. Buy on Amazon.

Courtesy of MCD

When the thousands of reports about plane crashes landed on Fitts’s desk, he could have easily looked at them and concluded that they were all the pilot’s fault—that these fools should have never been flying at all. That conclusion would have been in keeping with the times. The original incident reports themselves would typically say “pilot error,” and for decades no more explanation was needed. This was, in fact, the cutting edge of psychology at the time. Because so many new draftees were flooding into the armed forces, psychologists had begun to devise aptitude tests that would find the perfect job for every soldier. If a plane crashed, the prevailing assumption was: That person should not have been flying the plane. Or perhaps they should have simply been better trained. It was their fault.

But as Fitts pored over the Air Force’s crash data, he realized that if “accident prone” pilots really were the cause, there would be randomness in what went wrong in the cockpit. These kinds of people would get hung on anything they operated. It was in their nature to take risks, to let their minds wander while landing a plane. But Fitts didn’t see noise; he saw a pattern. And when he went to talk to the people involved about what actually happened, they told of how confused and terrified they’d been, how little they understood in the seconds when death seemed certain.

The examples slid back and forth on a scale of tragedy to tragicomic: pilots who slammed their planes into the ground after misreading a dial; pilots who fell from the sky never knowing which direction was up; the pilots of B-17s who came in for smooth landings and yet somehow never deployed their landing gear. And others still, who got trapped in a maze of absurdity, like the one who, having jumped into a brand-new plane during a bombing raid by the Japanese, found the instruments completely rearranged. Sweaty with stress, unable to think of anything else to do, he simply ran the plane up and down the runway until the attack ended.

Fitts’ data showed that during one 22-month period of the war, the Air Force reported an astounding 457 crashes just like the one in which our imaginary pilot hit the runway thinking everything was fine. But the culprit was maddeningly obvious for anyone with the patience to look. Fitts’ colleague Alfonse Chapanis did the looking. When he started investigating the airplanes themselves, talking to people about them, sitting in the cockpits, he also didn’t see evidence of poor training. He saw, instead, the impossibility of flying these planes at all. Instead of “pilot error,” he saw what he called, for the first time, “designer error.”

The reason why all those pilots were crashing when their B-17s were easing into a landing was that the flaps and landing gear controls looked exactly the same. The pilots were simply reaching for the landing gear, thinking they were ready to land. And instead, they were pulling the wing flaps, slowing their descent, and driving their planes into the ground with the landing gear still tucked in. Chapanis came up with an ingenious solution: He created a system of distinctively shaped knobs and levers that made it easy to distinguish all the controls of the plane merely by feel, so that there’s no chance of confusion even if you’re flying in the dark.

By law, that ingenious bit of design—known as shape coding—still governs landing gear and wing flaps in every airplane today. And the underlying idea is all around you: It’s why the buttons on your videogame controller are differently shaped, with subtle texture differences so you can tell which is which. It’s why the dials and knobs in your car are all slightly different, depending on what they do. And it’s the reason your virtual buttons on your smartphone adhere to a pattern language.

But Chapanis and Fitts were proposing something deeper than a solution for airplane crashes. Faced with the prospect of soldiers losing their lives to poorly designed machinery, they invented a new paradigm for viewing human behavior. That paradigm lies behind the user-friendly world that we live in every day. They realized that it was absurd to train people to operate a machine and assume they would act perfectly under perfect conditions.

Instead, designing better machines meant figuring how people acted without thinking, in the fog of everyday life, which might never be perfect. You couldn’t assume humans to be perfectly rational sponges for training. You had to take them as they were: distracted, confused, irrational under duress. Only by imagining them at their most limited could you design machines that wouldn’t fail them.

This new paradigm took root slowly at first. But by 1984—four decades after Chapanis and Fitts conducted their first studies—Apple was touting a computer for the rest of us in one of its first print ads for the Macintosh: “On a particularly bright day in Cupertino, California, some particularly bright engineers had a particularly bright idea: Since computers are so smart, wouldn’t it make sense to teach computers about people, instead of teaching people about computers? So it was that those very engineers worked long days and nights and a few legal holidays, teaching silicon chips all about people. How they make mistakes and change their minds. How they refer to file folders and save old phone numbers. How they labor for their livelihoods, and doodle in their spare time.” (Emphasis mine.) And that easy-to-digest language molded the smartphones and seamless technology we live with today.

Along the long and winding path to a user-friendly world, Fitts and Chapanis laid the most important brick. They realized that as much as humans might learn, they would always be prone to err—and they inevitably brought presuppositions about how things should work to everything they used. This wasn’t something you could teach of existence. In some sense, our limitations and preconceptions are what it means to be human—and only by understanding those presumptions could you design a better world.

Today, this paradigm shift has produced trillions in economic value. We now presume that apps that reorder the entire economy should require no instruction manual at all; some of the most advanced computers ever made now come with only cursory instructions that say little more than “turn it on.” This is one of the great achievements of the last century of technological progress, with a place right alongside GPS, Arpanet, and the personal computer itself.

It’s also an achievement that remains unappreciated because we assume this is the way things should be. But with the assumption that even new technologies need absolutely no explaining comes a dark side: When new gadgets make assumptions about how we behave, they force unseen choices upon us. They don’t merely defer to our desires. They shape them.


User friendliness is simply the fit between the objects around us and the ways we behave. So while we might think that the user-friendly world is one of making user-friendly things, the bigger truth is that design doesn’t rely on artifacts; it relies on our patterns. The truest material for making new things isn’t aluminum or carbon fiber. It’s behavior. And today, our behavior is being shaped and molded in ways both magical and mystifying, precisely because it happens so seamlessly.

I got a taste of this seductive, user-friendly magic recently, when I went to Miami to tour a full-scale replica of Carnival Cruise’s so-called Ocean Medallion experience. I began my tour in a fake living room, with two of the best-looking project staffers pretending to be husband and wife, showing me how the whole thing was supposed to go.

Using the app, you could reserve all your activities way before you boarded the ship. And once on board, all you needed was to carry was a disk the size of a quarter; using that, any one of the 4,000 touchscreens on the ship could beam you personalized information, such which way you needed to go for your next reservation. The experience recalled not just scenes from Her and Minority Report, but computer-science manifestos from the late 1980s that imagined a suite of gadgets that would adapt to who you are, morphing to your needs in the moment.

Behind the curtains, in the makeshift workspace, a giant whiteboard wall was covered with a sprawling map of all the inputs that flow into some 100 different algorithms that crunch every bit of a passenger’s preference behavior to create something called the “Personal Genome.” If Jessica from Dayton wanted sunscreen and a mai tai, she could order them on her phone, and a steward would deliver them in person, anywhere across the sprawling ship.

The server would greet Jessica by name, and maybe ask if she was excited about her kitesurfing lesson. Over dinner, if Jessica wanted to plan an excursion with friends, she could pull up her phone and get recommendations based on the overlapping tastes of the people she was sitting with. If only some people like fitness and others love history, then maybe they’ll all like a walking tour of the market at the next port.

Jessica’s Personal Genome would be recalculated three times a second by 100 different algorithms using millions of data points that encompassed nearly anything she did on the ship: How long she lingered on a recommendation for a sightseeing tour; the options that she didn’t linger on at all; how long she’d actually spent in various parts of the ship; and what’s nearby at that very moment or happening soon. If, while in her room, she had watched one of Carnival’s slickly produced travel shows and seen something about a market tour at one her ports of call, she’d later get a recommendation for that exact same tour when the time was right. “Social engagement is one of the things being calculated, and so is the nuance of the context,” one of the executives giving me the tour said.

SUBSCRIBE

Subscribe to WIRED and stay smart with more of your favorite writers.

It was like having a right-click for the real world. Standing on the mocked-up sundeck, knowing that whatever I wanted would find me, and that whatever I might want would find its way either onto the app or the screens that lit up around the cruise ship as I walked around, it wasn’t hard to see how many other businesses might try to do the same thing. In the era following World War II, the idea that designers could make the world easier to understand was a breakthrough.

But today, “I understand what I should do” has become “I don’t need to think at all.” For businesses, intuitiveness has now become mandatory, because there are fortunes to be made by making things just a tad more frictionless. “One way to view this is creating this kind of frictionless experience is an option. Another way to look at it is that there’s no choice,” said John Padgett, the Carnival executive who had shepherded the Ocean Medallion to life. “For millennials, value is important. But hassle is more important, because the era they’ve grow up in. It’s table stakes. You have to be hassle-free to get them to participate.”

By that logic, the real world was getting to be disappointing when compared with the frictionless ease of this increasingly virtual world. Taken as a whole, Carnival’s vision for seamless customer service that can anticipate your every whim was like an Uber for everything, powered by Netflix recommendations for meatspace. And these are in fact the experiences that many more designers will soon be striving for: invisible, everywhere, perfectly tailored, with no edges between one place and the next. Padgett described this as a “market of one,” in which everything you saw would be only the thing you want.

The Market of One suggests to me a break point in the very idea of user friendliness. When Chapanis and Fitts were laying the seeds of the user-friendly world, they had to find the principles that underlie how we expect the world to behave. They had to preach the idea that products built on our assumptions about how things should work would eventually make even the most complex things easy to understand.

Steve Jobs’ dream of a “bicycle for the mind”—a universal tool that might expand the reach of anyone—has arrived. High technology has made our lives easier; made us better at our jobs, and created jobs that never existed before; it has made the people we care about closer to us. But friction also has value: It’s friction that makes us question whether we do in fact need the thing we want. Friction is the path to introspection. Infinite ease quickly becomes the path of least resistance; it saps our free will, making us submit to someone else’s guess about who we are. We can’t let that pass. We have to become cannier, more critical consumers of the user-friendly world. Otherwise, we risk blundering into more crashes that we’ll only understand after the worst has already happened.


Excerpted from USER FRIENDLY: How the Hidden Rules of Design Are Changing the Way We Live, Work, and Play by Cliff Kuang with Robert Fabricant. Published by MCD, an imprint of Farrar, Straus and Giroux November 19th 2019. Copyright © 2019 by Cliff Kuang and Robert Fabricant. All rights reserved.

When you buy something using the retail links in our stories, we may earn a small affiliate commission. Read more about how this works.


More Great WIRED Stories

Continue Reading

Technology

A Tesla Cybertruck Mishap, a Massive Data Leak, and More News

Hackers are stealing and Elon is squealing, but first: a cartoon about subscription dreams.Here’s the news you need to know, in two minutes or less.Want to receive this two-minute roundup as an email every weekday? Sign up here!Today’s NewsMeet the Tesla Cybertruck, Elon Musk’s Ford-fighting pickup truckTesla CEO Elon Musk last night unveiled his newest…

Published

on

A Tesla Cybertruck Mishap, a Massive Data Leak, and More News

Hackers are stealing and Elon is squealing, but first: a cartoon about subscription dreams.

Here’s the news you need to know, in two minutes or less.

Want to receive this two-minute roundup as an email every weekday? Sign up here!

Today’s News

Meet the Tesla Cybertruck, Elon Musk’s Ford-fighting pickup truck

Tesla CEO Elon Musk last night unveiled his newest baby, an all-electric pickup called the Tesla Cybertruck. He demonstrated that it can take a sledgehammer to the door with nary a scratch, and he also accidentally demonstrated that it can’t take a ball to the window. But behind the showmanship and Elon’s audible disbelief at the onstage mishap is a truck with a 500-mile range and the torque that comes from an electric motor. It represents an important new market expansion for Tesla. Now it just has to actually put the darn thing into production.

1.2 billion records found exposed online in a single server

Hackers have long used stolen personal data to break into accounts and wreak havoc. And a dark web researcher found one data trove sitting exposed on an unsecured server. The 1.2 billion records don’t include passwords, credit card numbers, or Social Security numbers, but they do contain cell phone numbers, social media profiles, and email addresses—a great start for someone trying to steal your identity.

Fast Fact: 2025

That’s the year NASA expects to launch the first dedicated mission to Europa, where water vapor was recently discovered. The mission to Jupiter’s moon will involve peering beneath Europa’s icy shell for evidence of life.

WIRED Recommends: The Gadget Lab Newsletter

First of all, you should sign up for WIRED’s Gadget Lab newsletter, because every Thursday you’ll get the best stories about the coolest gadgets right in your inbox. Second of all, it will give you access to early Black Friday and Cyber Monday deals so you can get your shopping done early.

News You Can Use:

Here’s how to hide nasty replies to your tweets on Twitter.

This daily roundup is available as a newsletter. You can sign up right here to make sure you get the news delivered fresh to your inbox every weekday!

Continue Reading

Technology

How Wily Teens Outwit Bathroom Vape Detectors

Last spring, students at Hinsdale Central High School discovered six vaping detectors in bathrooms and locker rooms around campus. About 20 miles southwest of Chicago, Hinsdale Central has been battling on-campus vaping for years. Administrators tried making students take online courses if they were caught with ecigarettes; they talked to law enforcement; the Village of…

Published

on

How Wily Teens Outwit Bathroom Vape Detectors

Last spring, students at Hinsdale Central High School discovered six vaping detectors in bathrooms and locker rooms around campus. About 20 miles southwest of Chicago, Hinsdale Central has been battling on-campus vaping for years. Administrators tried making students take online courses if they were caught with ecigarettes; they talked to law enforcement; the Village of Hinsdale even passed an ordinance that would make it easier for officers to ticket minors caught with the devices. To no avail. And the detectors? Students simply ripped them off the walls.

Ecigarettes, which are easy to conceal and, until recently, came in a dazzling array of sweet, fruity, and dessert flavors, are hugely popular among teenagers. A recent study found that 28 percent of high schoolers and 11 percent of middle schoolers frequently vape. So schools across the country are spending thousands of dollars to outfit their campuses with vaping detectors, only to find that the devices can’t stand up to wily teens and that policing student behavior isn’t the same as permanently changing it.

Like smoke detectors, vape detectors are relatively unintrusive. They don’t even record video or audio—they just register the chemical signature of vaping aerosol, then send an email or text alert to school officials.

Some schools say they’re a useful deterrent. A district in Sparta, New Jersey, started off with two detectors and is planning to install more. Freeman School District in Washington installed detectors a few weeks ago. “They’ve been very effective, and we’re glad we have them,” says superintendent Randy Russell, who noted that the detectors already helped catch one young vaper in the act.

But at Hinsdale, even before the teens subjected them to blunt force trauma, the devices hadn’t lived up to expectations. “By the time we get there the kids are gone,” says Kimm Dever, an administrator at Hinsdale Central. Dever says the devices also went off randomly, and administrators couldn’t tell which kids were vaping and which just happened to be in the bathroom when the devices alerted.

Revere Schools in Bath, Ohio, reported similar problems. Revere spent around $15,000 to install 16 detectors in its middle and high schools at the beginning of the school year. Parents were thrilled, but administrators rarely made it to the bathroom in time to catch the vapers mid-puff. “It was like chasing ghosts,” says Jennifer Reece, a spokesperson for the school district. In theory, school officials could consult footage from hallway cameras to triangulate which students were in the bathroom when the detectors went off. “That also takes up time, and we don’t always have that type of time” Reece says.

Revere bought detectors with grant money from the state Attorney General’s Office. Now, Reece often gets questions from other school districts about the devices. “If they don’t have grant money I don’t know if it’s worth [the cost],” she says.

If vaping has become the cool thing to do among students, then buying vape detectors is the big trend for school districts. Derek Peterson, the CEO of Soter Technologies, which makes the Flysense detector that Revere installed, says the company is fielding about 700 orders a month. “We have more schools coming to us than we know what to do with,” he says. IPVideo, which makes a number of cameras and other gadgets for schools, sells a Halo detector that also claims to distinguish between THC and nicotine vapor. The detectors can integrate with school camera systems so it’s easier for administrators to figure out which students are in the bathroom, and both companies’ detectors cost roughly $1,000 a piece. Flysense charges an additional annual fee.

The sensors are chemical detectors that go off when the levels of certain chemicals in the room change. Most schools say they do sense the vapor and that they’ve caught students because of them. But kids are clever. Some exhale into their backpacks or sleeves, where the aerosol dissipates before wafting up to the detector. Other kids resort to AP physics–level subterfuge. They exhale into the toilet and flush, creating a vacuum that sucks the aerosol into the pipes. “There’s nothing we can do about that,” says Peterson. “There’s no sensing that could ever change the laws of physics.”

The problem is that detectors alone can’t change students’ behavior. It’s important for schools to analyze their goals, says Bonnie Halpern-Felsher, a developmental psychologist at Stanford who studies teen vaping. Vape detectors might help catch offending kids so they can be punished, she says, but “if the goal is to prevent and stop, vape detectors are not the way to go.”

Peterson agrees and is already getting in on the education angle, offering a #NoVaping package that includes brochures, posters, and suggestions for class presentations.

Between 2017 and 2019, the California Department of Justice distributed more than $12 million to California school districts trying to deter vaping through a number of measures including installing detectors, hiring school resource officers, and running educational programs.

One of those districts was Las Virgenes Unified, which serves around 11,500 students northwest of Los Angeles. In October 2018, Las Virgenes spent half of its grant, some $50,000, to install Flysense detectors at its two high schools and three middle schools. “The technology is good. They work,” says superintendent Dan Stepenosky. But he combines the detectors with other measures. When students are caught vaping, they’re sent to a 90-minute meeting with their parents and an addiction counselor. The school dispatched administrators to nearby gas stations, grocery stores, and convenience stores to remind people not to sell ecigarettes to kids under 21. The school even partners with law enforcement to run sting operations on businesses in the community that sell ecigarettes to minors. So far they’ve conducted over 250 operations complete with undercover officers and marked bills.

But the most important element hasn’t been the sting operations, the crackdowns on local retailers, or the detectors. “The most impactful has been the education piece,” says Stepenosky. The district holds seminars for parents and teachers, and it hired extra deans to focus on student wellness and included information about ecigarettes in school curricula.

These strategies are comprehensive, and they demand a lot of resources. One school in South Dakota raised money from the local community to buy its sensors. Other school districts are suing Juul, blaming the company’s marketing for creating a new generation of nicotine-addicted kids. Those districts hope to get payouts that will alleviate the huge financial burden of running addiction counseling and education programs. Stepenosky received over a million dollars from the California Department of Justice, and he’s already applying for more funding for next year.


More Great WIRED Stories

Continue Reading

Recent Posts